Lagrangian duality between constrained estimation and control

نویسندگان

  • Graham C. Goodwin
  • José A. De Doná
  • María M. Seron
  • Xiang W. Zhuo
چکیده

We show that the Lagrangian dual of a constrained linear estimation problem is a particular nonlinear optimal control problem. The result has an elegant symmetry, which is revealed when the constrained estimation problem is expressed as an equivalent nonlinear optimisation problem. The results extend and enhance known connections between the linear quadratic regulator and linear quadratic state estimation problems.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A geometric framework for nonconvex optimization duality using augmented lagrangian functions

We provide a unifying geometric framework for the analysis of general classes of duality schemes and penalty methods for nonconvex constrained optimization problems. We present a separation result for nonconvex sets via general concave surfaces. We use this separation result to provide necessary and sufficient conditions for establishing strong duality between geometric primal and dual problems...

متن کامل

A Nonlinear Lagrangian Approach to Constrained Optimization Problems

In this paper we study nonlinear Lagrangian functions for constrained optimization problems which are, in general, nonlinear with respect to the objective function. We establish an equivalence between two types of zero duality gap properties, which are described using augmented Lagrangian dual functions and nonlinear Lagrangian dual functions, respectively. Furthermore, we show the existence of...

متن کامل

On Lagrangian duality in vector optimization: applications to the linear case

The paper deals with vector constrained extremum problems. A separation scheme is recalled; starting from it, a vector Lagrangian duality theory is developed. The linear duality due to Isermann can be embedded in this separation approach. Some classical applications are extended to the multiobjective framework in the linear case, exploiting the duality theory of Isermann.

متن کامل

SOME PROPERTIES FOR FUZZY CHANCE CONSTRAINED PROGRAMMING

Convexity theory and duality theory are important issues in math- ematical programming. Within the framework of credibility theory, this paper rst introduces the concept of convex fuzzy variables and some basic criteria. Furthermore, a convexity theorem for fuzzy chance constrained programming is proved by adding some convexity conditions on the objective and constraint functions. Finally,...

متن کامل

Computational Complexity of Inexact Gradient Augmented Lagrangian Methods: Application to Constrained MPC

We study the computational complexity certification of inexact gradient augmented Lagrangian methods for solving convex optimization problems with complicated constraints. We solve the augmented Lagrangian dual problem that arises from the relaxation of complicating constraints with gradient and fast gradient methods based on inexact first order information. Moreover, since the exact solution o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Automatica

دوره 41  شماره 

صفحات  -

تاریخ انتشار 2005